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Abstract

Parametric representations, that is, deterministic functions with time and/or space argument depending on finite families
of random variables, are defined and used to describe approximately stationary non-Gaussian processes and fields specified
partially by their marginal distribution and second-moment properties. The proposed parametric representations are
memoryless transformations of sequences of parametric stationary Gaussian processes and fields, and are referred to as
parametric translation models. Conditions are established for the convergence of statistics of sequences of parametric
translation models to target statistics. Two numerical examples are presented to illustrate some properties of parametric
translation models and demonstrate their use in random vibration.
© 2006 Published by Elsevier Ltd.

1. Introduction

Parametric representations for stochastic processes and random fields, that is, deterministic functions of
time and/or space depending on a finite number of random variables, are commonly used in applications since
numerical calculations can only handle finite families of random variables, and stochastic processes and
random fields generally consist of infinite families of random variables. There are many parametric
representations providing satisfactory approximations for the second-moment properties of processes and
fields but no information on their distribution, unless they are Gaussian. This is a severe limitation since (1)
most physical parameters do not follow Gaussian distributions [1, Chapter 2], (2) the existence and uniqueness
of the solution of partial differential equations with spatially varying random coefficients requires, for
example, that the samples of these coefficients take values in some bounded intervals [2], and (3) second-
moment properties are insufficient for generating samples of non-Gaussian processes and fields.

Our objective is to construct parametric representations for non-Gaussian stationary processes and fields.
A two-step algorithm is developed. First, a target process or field specified partially by its second-moment
properties and marginal distribution needs to be approximated by a translation function, that is, a memoryless
transformation of a stationary Gaussian process or field, provided it exists. The resulting approximation is
referred to as the target translation function. Second, parametric representations need to be constructed for
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the Gaussian image of the target translation function. Memoryless transformations of these representations
can be used to define sequences of parametric non-Gaussian functions, referred to as parametric translation
models. It is shown that the first two moments and the finite dimensional distributions of the sequence of
parametric translation models converge to the corresponding properties of the target translation function
under some conditions. Two numerical examples are presented to illustrate among other properties the
convergence of the statistics of parametric translation models to those of the target translation function and
potential use of parametric translation models in random vibration.

The use of parametric translation models in applications is not new, for example, these models have been
used to generate samples of non-Gaussian functions [3, Section 5.3.3.1]. However, there has been no
systematic study attempting to establish conditions under which statistics of sequences of parametric
translation models converge to specified target statistics. Determination of such conditions is a major objective
of this paper.

2. Translation processes and fields

Let X(t), t € Rd’, be an RY-valued stationary non-Gaussian function with coordinates X;(t), i =1,...,d, of
marginal distribution Fi(¢t) = P(X;(t)<¢), mean 0, variance 1, and covariance functions (;(t) =
E[Xit+71)X(t)], T € RY. The (d, d)-matrix with entries (;(7) is denoted by {(r) = E[X(t + oX()"]. If t is
space, then X is a homogeneous non-Gaussian field. If t = (¢’ = 1) is time, then X is a stationary non-
Gaussian process.

Suppose that X is specified partially by its second-moment properties and the marginal distributions of its
coordinates, that is, the functions {; and F;, i,j = 1,...,d. Our objective is to construct parametric models for
X, that is, deterministic functions depending on time and/or space arguments and finite families of random
variables. The construction involves two steps. First, X needs to be approximated by a translation function X7
matching the specified statistics of X. We refer to Xy as the target translation process, field, or function, and
assume it exists. Second, we need to construct a sequence of models X(}') ,n=1,2,..., converging in some
sense to X as n — oo. The members of this sequence are defined by memoryless transformations of parametric
Gaussian functions, and are referred to as parametric translation models. We consider the above partial
characterization for X since the first two moments and the marginal distributions of non-Gaussian functions
are frequently known in applications, and information beyond these properties is rarely available.

In this section we define translation functions X7 associated with non-Gaussian stationary functions X
specified by their first two moments and marginal distributions; review of some of their essential properties is
also given. Parametric translation models X(T") are introduced in the next section and the convergence of the
first two moments is examined along with the convergence of the properties of the finite dimensional
distributions of these models to the corresponding properties of the target translation model X7 associated
with X.

Let X7(t) e RY, t e RY, be a translation random function defined by

Xri(t) = F7U (®(Gi(1) = h(Gi(t), i=1,....d, (1)
where @ is the distribution of the standard Gaussian variable N(0,1) and G(t), t € RY, is an R%-valued
stationary Gaussian function with coordinates Gy(t), i=1,...,d, of mean 0, variance 1, and covariance

functions p;(1) = E[Gi(t + 1) Gi(V)], 1€ RY. The (d,d) matrix with entries p;i(z) is denoted by
p(t) = E[G(t + 7) G(t)"]. It is assumed throughout the paper that the distribution functions F;, i =1,...,d,
are absolutely continuous.

Property 1. The translation process/field Xt in Eq. (1) is stationary with marginal distributions F;, i =1,...,d.
The finite dimensional distributions of X7 can be calculated from

PXriti)<xit, . Xoi(tum) SXums - Xra(ta ) <Xa 1, X 1a(tam,) < Xam,9)
= P(Gl(tl,l)gh?l(xl,l)a sy Gl(tl,l711)<h171(xl,n1|),
ey Gd(td,l)gh;l(xd,l)a sy Gd(td,m,/)<h;l(xd,m[,)) = ¢(é: l‘), (2)
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where m; >0,...,mz=>0 are integers, (tii,...,ts,,,) are arbitrary arguments, ®(&;r) denotes the joint
cumulative distribution of the Gaussian vector (Gi(t1,1), ..., G4(tsm,)) wWith covariance matrix r obtained from
the covarlance functlons p;(-) of the Gaussian process G, and is calculated at the argument

= (hy (x1 0, . hd (Xdm,))- The equality in Eq. (2) holds since h;: R—R, i=1,...,d, are increasing
functlons and shows that X7 is stationary since G is stationary. We also have

P(X7(0)<x;) = P(GO<h; ' (x) = D (x1) = Fi(x) (€)

from Eq. (2), so that the coordinates of X7 and X have the same marginal distributions.

Property 2. Moments of any order of Xt can be calculated from

d
H Xr(t)"
i

provided they exist, where k1 =0, ...,k;>=0 are arbitrary integers.

.u(kl,”'akd;tla'”atd) =E

d
=E Hh,»(G,-(t»)’“] )
i=1

The result in Eq. (4) follows from the definition of X7 in Eq. (1) and the fact that /; are increasing functions.
We note that u(ky,...,kqg;ty, ..., tg) is equal to 0 and 1 for (k; = 1,k; =0,j#i) and (k; =2,k; =0, #1),
respectively. The covariance functions of X7 are given by

it — ) = ELX7(t) X 15()] = EU(Gi(t) hy(Gy(t)]
- /R )y (), v: s — ) dud, (5)

where ¢(u, v; p) = exp(—(u? + v> — 2puv)/2)/(2n+/1 — p?) denotes the joint density of a two-dimensional
Gaussian vector with correlated N(0, 1) coordinates and correlation coefficient p. The argument t; — t; rather
than (t;,t;) is used in Eq. (5) since Xr is stationary. We note that {;(t; —t;) coincides with u in Eq. (4)
for kj=k;=1 and k, =0 for g#i,j, and that {; is bounded, by the Cauchy-Schwarz inequality and
properties of F;.

Property 3. If the functions h;, i = 1,...,d, are differentiable, then (;(v) is an increasing function of p;(z). If
pyj(t) = 0, then {;(t) = 0. The covariance function (;(t) takes values in the range [}, (7], where

& = El(NYhy(=N),
" = E[h(N)hi(N)] (6)
and N denotes a N(0, 1) variable.

Since the functions /; are differentiable, we have

oC;(7) , ,
= E[H(Gi(t,) H(Gi(t;
) = EGOD G ™
by Price’s theorem [4, Section 2.3], where /7, i = 1,...,d, denote the derivatives of /;. Since A; are increasing

functions, their derivatives are positive, so that the expectation on the right side of Eq. (7) is positive. Hence,
{ij(7) is an increasing function of p;().

That {;(z) = 0 for p;(r) = 0 follows from Eq. (5) since ¢(u,v;0) = ¢p(u)p(v), where P(u) = exp(—u?/2)\/2m.
If p;(r) = £1, then G;(t + 7) and £Gj(t) are equal to a standard Gaussian variable N in distribution. The range
in Eq. (6) results since (;(7) increases with p;(t) and p;(r) can only take values in [—1, 1].

In applications we may be given the functions (£, {;), so that we need to find p;. This inverse problem has
no solution if {; takes values outside [}, (5] If {; takes values in [(}, {7*], we can calculate p(t) for each (7).
However, the resulting functions p; are not necessarily covariance functions, for example, one or more
functions p; may not be positive definite [1, Section 3.1.1].
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Property 4. If G is continuous almost surely (a.s.) and the functions h; are continuous, then Xt is continuous a.s.

Since G is continuous a.s. its samples G;(-, w) are continuous functions for w € 2\ Qy, where (2, %, P) is the
probability space on which G is defined and P(Qy) = 0. Then /; o G;(-, w) is continuous for w € Q\Q since /4; is
continuous by assumption, so that Xz is continuous a.s.

Property 5. Let Ny and N, be independent N(0, 1) variables. If G is mean square (m.s.) continuous, the functions
h; are continuous, and E[h;(|N| + |N2|)2]<oo, then X1 is m.s. continuous.

Consider an arbitrary coordinate X 7;(t;) = h;(Gi(t;)) of X7. We need to show that the m.s. continuity of G;,
that is, the convergence p,(t) — 1 as ||t|| — 0, implies the convergence {;(t) — 1 as ||z|| — 0. If the limit
Izl = 0 can be taken under the integral in Eq. (5), we have

i ” m (1) = /thm hi(€py + C2p)hi(Cpy — Ep2)d(E4, £2:0) A, dE,

= [ h@recai0de ds = [ @racnds [ pedn =B =1 ®)
R R R

by the change of variables (u=&p, + &Epy,v=2E6p —Epy) with p = /(1 +pu(r))/2 and p, =
/(1 = p;())/2. The second and the last equalities in Eq. (8) follow by the continuity of /; and the postulated
properties of the distributions F;, respectively.

That the interchange of the integral and the limit operations performed in Eq. (8) is valid results from the
proof of Property 9 in the following section. The proof of this property also shows that the condition
E[hi(IN 1| + |N2|)*] < oo is needed.

3. Parametric translation processes and fields

Consider the sequence of parametric translation models
X0 = F o o(GP(1) = (G (1), i=1,....d. ©)

where G = {G(") }, n=1,2,..., is a sequence of stationary Gaussian functions such that E[GE")(t)] =0,

E[G"(t)’] = 1, and p{(x) = E[G/"(t + 1)G"(t)]. As previously, denote by p®(7) = E[G"(t + )G ()] a
(d, d)-matrix with entries pl")(r) Truncated Karhunen-Loéve or other parametric representations for G
depending on a finite number of random variables can be used to construct the sequence of processes G™. We
assume the m.s. convergence of G" to G, which implies the convergence pg’)(r) — p;(t) as n — oo for all

e R? and all Lj=1,...,d.

Parametric translation models as in Eq. (9) have been used to generate samples of non-Gaussian functions
[3, Section 5.3.3.1]. However, the relationship between statistics of X(}’) ={X (")} and X7 = {X 7} has not been
examined systematically. One of the main objective of this paper is to study the convergence of statistics of X(")
to statistics of X7 as n — oo.

We give some useful properties of the sequence of parametric translation processes X(}” in Eq. (9), and
establish conditions under which statistics of X(}') converge to statistics of X7 as n — oo.

Property 6. The members of the sequence of parametric translation processes {X( Y are stationary for each n.
Moreover, X becomes a version of Xt as n — oo.

The finite dimensional distributions of X(}” can be calculated from Eq. (2) with G™ in place of G, so that
these distributions are equal to @(&;r™), where r" corresponds to the covariance functions p(”) rather than p;;.

The postulated convergence ||[r”) —r|| — 0, n — oo, implies that for ¢>0 there exits nU(a)>1 such that

| (1) (1)
J
('l)

— 1yl <e for n=ny(e), so that we have |r;” —ry|<e for all i,j and n>n(e) = max;{n;(e)}. Accordingly,
€ (rj — & rj+¢) for n=n(e) and some £>0 such that —1<r; —e<r;+e<1 for all i,j. It is assumed

w1thout loss of generality that the off-diagonal entries of r are in the range (—1, 1). If an off-diagonal entry of r
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is 1, the coordinates of the Gaussian vector corresponding to this entry are perfectly correlated so that we
can reduce the dimension of r to eliminate this redundancy.

The matrices r* = {r; + ¢} and r~ = {r; — ¢} are positive definite provided ¢ is sufficiently small, so that they
are valid covariance matrices. Let @.(&;r) denote the probability that the coordinates of a standard Gaussian
vector with covariance matrix r are larger than the coordinates of &, for example, @.(&r)=
P(N|>¢&,N,>¢&y) for a bivariate standard Gaussian vector (N, N;) with correlation coefficient r;. The
inequalities

D (ETT)ZD(ET) =D (& 1) (10)

hold by a theorem by Slepian [5]. Since ¢>0 can be made arbitrarily small, we have the convergence
D (&) — D (& 1) as n — oo.

Arguments used to obtain the result in Eq. (3) can be used to show that the functions F;, i = 1,...,d, are the
marginal distributions of the co-ordinates X (;’)l of X(}’). Hence, the coordinates of X7 and X(T") have the same

marginal distributions for each n = 1,2, ..., and the finite dimensional distributions of X(}i) converge to those
of X7 as n — oo, that is, X(T") becomes a version of Xy for large n.

Property 7. Moments u"(ky,. .., kati,...,t7) of any order of X(}” can be calculated from Eq. (4) with G™ in
place of G.

This statement follows directly from the definition of X(;). The covariance functions of X(}') are the moments
WOk, ... kasty,. .. tg) for k; = k; = 1 and k, = 0 for g#i,j, and are given by (Eq. (5))

{6 — ) = EIX D)X Ty (1)) = Elh(G" )G (t)]
= / hi@hi(0)b(u, v; pff (6 — 7)) dudo. (11)
R2
The expression of Cg-” shows that X (}’)l is weakly stationary, in agreement with the previous property.

Property 8. If the functions h;, i =1,...,d, are differentiable, then Cg-” are increasing functions of pgj"), and
cannot take values outside the range [}, ('] given by Eq. (6).

The arguments used to prove the third property in the previous section apply directly here since Eq. (7) is
valid with G™ in place of G.

Property 9. Let Ny and N, be independent N(0,1) variables. If E[|h; (|N1|+|N2|)h (N1 + N2 < o0,
i,j=1,...,d, and h; are continuous functions, then the covariance functzons C (1:) of X() converge to the
covarlamefuncllons (i(t) of X as n — oo for all t € RY and all i,j=1,...,d.

A direct consequence of this result is that the second-moment properties of X7 can be approximated by the
second-moment properties of X for a sufficiently large n.
The covariance functions C( Y in Eq. (11) can be expressed in the form

(0(x) = /R (&P + SBYIE B — GBI, E:0)dE dE

- /R (6 dE A (12)

by using the change of variables

=/ (L+p)/2+ En /(L= pi™)/2 = &Y + &S,

1+ p"/2 = &/ (1 = pi") /2 = & B — &Y. (13)
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Since A; are increasing functions, ﬁ(") € [0,1], and flﬂ(ln):tézﬁ(zn)<|£l| + [&,], we have h,»(/i(ln).fl :I:ﬁg”)éz)
<Ihi(1&1] 4 16:2D], so that

195 (€1 QNI IBOE N + 1EDAE ]+ 1EDIGEL €3 0) = g1, &), n=1 (14)

We note that the functions q,](él, &,) are Lebesgue integrable in R? by assumption. The inequality in Eq. (14)
implies that the functions g; )(él, &) are also Lebesgue integrable in R?. Let g;(£1,¢2) be the function
JU)(EI, ¢») with p;(t) in place of pl")(r) The continuity of the functions /4; and the convergence p,])(r) — p;(T)

imply the convergence g” (51, ¢2) = 9;#(&1, &) as n — oo. These properties yield

() = / g, ), dEy— / 0,61, 8)dE A6 = (@), n— oo, (15)

by Lebesgue’s dominated convergence theorem [6, Theorem 4.3.5].

Property 10. If the processes G™ are a.s. and m.s. continuous and the functions h; are continuous, then X(}q) are
a.s. and m.s. continuous, respectively.

Arguments used to prove the fourth and fifth properties in the previous section can be applied directly to
prove this property.

4. Monte Carlo algorithm

Let X7 be the translation random function in Eq. (1) specified completely by the marginal distributions F;,
i=1,...,d, and the covariance functions Py of its Gaussian image G. Let X(T"), n=1,2,..., be the sequence of

parametric translation models in Eq. (9), where G” converges in mean square to G. We have seen that

the second-moment properties and the finite dimensional distribution of X”)

as n — 0o.

Our objective is to generate samples of Xr. Since it is not possible to generate samples of X7 but samples of
X(}’) can be generated, we use samples of X(T) as a substitute for samples of X7. Theoretical cons1derat10ns in
the previous sections show that statistics of X7 can be approximate by corresponding statistics of X% which
can be estimated from samples of X(”) for a sufficiently large n.

The following two-step Monte Carlo algorithm can be used to generate samples of X( ") The algorithm is
based on the definition on X(}’) in Eq. (9).

Step 1: Generate samples G™(t, ) of the Gaussian image G™ of X(") There are many algorithms for
generating samples of stationary Gaussian functions [3, Section 5.3.1]. An algorithm based on the spectral
representation method is used in Example 1 of the following section to generate samples of G" taking values
in R? (Eq. (21)).

Step 2: The mapping of the samples of G™ generated in Step 1 into samples of X(" is given by
Eq. (9). For example, let G"(t, w) be a sample of G™. The corresponding sample of X(Y'f) can be calculated
from

converge to those of Xr

Xt o) = F' o &G, 0)) = h(G"(t, ). (16)

Generally, the transformation in Eq. (16) is not available analytically, so that it has to be performed
numerically. Two MATLAB functions can be used to calculate samples of X (7'5), from samples of G®:

e The cdf MATLAB function,
(G (t, »)) = cdf(‘normal’, G"(t, ), 0, 1),

performs the mapping G™(t, w)— &(G"(t, w)).
o The icdf MATLAB function,

XPUt,0) = F7' o 9(GP(t, ) = icdf(‘name’, (G (t, »)), a,b, . ..),
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performs the mapping G"X(t, w)—~ X7 @ i(t, ). The use of these MATLAB functions is demonstrated in
Example 1 of the following section.

5. Numerical examples

Two examples are presented. The first examples illustrates the convergence of the covariance functions of a
sequence of parametric translation processes to those of a target translation process. The second example
examines the convergence of responses of a linear oscillator to a sequence of parametric Gaussian and
translation input processes.

Example 1. Let X7 be an R’-valued translation process with coordinates X 71 and X7, following lognormal
and beta distributions of mean 0 and variance 1, that is,

X7.1(f) = —1.272 + exp(0.6937G (1)),

X7a(t) = =3+ 5F " 0 ®(Gy(1)). (17)

where F'is a beta distribution with range (—3,2) and parameters (y = 3,7 = 2) [7, Chapter 24], and the image
G of X7 is an R?-valued stationary Gaussian process with coordinates (G, G») of mean 0 and variance 1. The
covariance and one-sided spectral density functions of G are

pu® = ELG(t-+ 0G0 = (1 = ) ™D 250 = 1.2 (18)
and
1—2 _ A _
gu(v) = - 5k/1(0<v<vk)+$1(0<v<v), (19)
k

respectively, where v, v>0 and 1 € [0, 1] are some constants, 1(4) = 1 or 0 if 4 is, respectively, true or false,
and Jy =1 and 0 for k =1 and k#/, respectively. The covariance functions {;;, k,/ = 1,2, of X7 can be
calculated from Egs. (5), (17) and (18).

We note that the processes (G, G,) with the above properties can be given by

Gi(t) =1 = 2Z () +0Z(1), k=12, (20)

where Z; and Z are independent band limited Gaussian white noise processes with mean 0, variance 1, and
frequency band (0, V) and (0, V), respectively.

We construct a sequence of parametric translation processes X(}’), n=1,2,..., converging to X7 by using
the spectral representation theorem for weakly stationary stochastic processes [3, Section 5.3.1.1]. Let

Z"() = NoTa Z(Aﬁj? cos(vilt) + BY") sin(v{')1)),

1 & ‘
Z0() = 7 > (A4 cos(w1) + B sin(v{"1)), 1)
i=1

be approximations of Z; and Z corresponding to partitions of the frequency ranges (0, V;) and (0, ¥) in n equal
intervals, where Ag{"l), Bg”?, A(") and B”) are independent N(0, 1) variables, vi; = (i — 1/2)%/n, i =1,...,n,

and Vz—(z—1/2)v/n i=1,...,n Let
GZ’ (1) = NT=2Z2(t) +VIZP()., k=12, 22)

define a sequence G = (G(m G(")) of parametric stationary Gaussian processes. The limit of G™ as n — oo is
a process with the same probability law as G, so that G™ becomes a verswn of G as n — oo [3, Section
5.3.1.1]. The corresponding sequence of parametric translation models X is given by Eq. (17) with G” in
place of G.
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Fig. 1. Estimates of the covariance functions for C(l"l) for n =10 (——), n = 50 (=wweer ) and 7 = 100 (m—).
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Fig. 2. Estimates of the covariance functions for 4"(1';) for n =10 (——), n = 50 (=wweer ) and 7 = 100 (m—).

We note that the coordinates of X(}’) and X7 have the same marginal distributions by construction.
In Figs. 1-3, are shown estimates of the covariance functions Cg}), k,l=1,2, of X(}’) obtained from 500
independent samples of this process for vy = 25, ¥ = 5, and A = 0.3. There are notable differences between the
estimates of Cg}) corresponding to n = 10 and 100. Estimates of Cg}) for n> 100 are practically indistinguishable
from those for n = 100 indicating the convergence CZ;)(%') — {(t) as n — oo in agreement with a Property 9
proved in a previous section for parametric translation models. The results plotted in Figs. 1-3 show that the
parametric translation models X(}’) with n>100 considered in this example approximate satisfactorily the

second-moment properties of the target translation process X7. The results also provide useful information on
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Fig. 3. Estimates of the covariance functions for C(z’;) for n =10 (——), n = 50 (= ) and 7 = 100 (—).

the rate of convergence of the approximating sequence of processes X(}” . They show that the covariance
functions Cg})(t) converge faster to the target covariance functions {;,(t) for smaller rather than larger time
lags, for example, Cg})(r) >~ (y(t) for n=10 and t<1, but C(")(r) with n =10 is an unsatisfactory
approximation for {(7) if t>1.

The two-step Monte Carlo algorithm in the previous section has been applied to generate samples of X(}’) .
Samples of G have been calculated from Egs. (21) and (22) with Agfl)., Bﬁ(’?, Ag"), and BS-") replaced by
independent samples of N(0, 1). The mapping in Eq. (17) has been used to obtain samples of X(}’) from samples
of G™. The first equality in Eq. (17) is elementary and has been used directly. The second equality in this
equation is not available in analytical form, so that the MATLAB function —3 + 5 icdf(‘beta’@(Gg”))(t, ),
7,1) was used to map samples of G(Z”) into samples of X (}’)2

Example 2. Let G; and X7 be the processes in Egs. (17) and (20) with 2 = 0. Denote by Dg and Dy the
displacement of a linear oscillator with natural frequency vo = 3 and damping ratio & = 0.05 subjected to G,
and X, respectively. These displacement processes satisfy the differential equations

Da(t) + 2EvoDa(0) + v§2Dg(1) = G (1),

Dr(t) + 2o Dr() + v3D1(t) = X 71(2). (23)

The stationary responses Dg and Dr have mean 0 but different covariance functions because the
covariance functions of G and X7 do not coincide. Generally, the difference between the second-moment
properties of X7 and G is not significant [1, Section 3.1.1], so that the first two moments of D and Dy are
similar.

Consider first the process Dg, and let D") be the oscillator displacement to the sequence of parametric
processes G(”) in Eq. (22) converging to Gj. The one-sided spectral density of the stationary response Dy is

1/%
(2 — v2)* + (2&wvp)?

9p,(V) = 10<v<i) = [kMP1/f)1O0<v<i), 24)
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so that the variance % of D¢ and the variance a% of D¢ are
G

ﬂ -

2 /7
= v)dv >~ —~L—,
O, /0 QDG( ) 45‘](3)

7 =
2 2 n/v
. = dv >~ —— 25
GDG /0 v gDG(v) v 45‘)0 ’ ( )
where the above approximations hold if vo <V, and the damping ratio ¢ is relatively small [8, Section 5.2.1].
The mean x-upcrossing rate of Dg can be calculated from

O'DG x2
fg(x) = exp| =55 |- (26)
2nop, ( 2G%G>
The mean x-upcrossing rate of D(G") is
(n) 5
x
1) = Pl @7
D<G”> )

where

B = —Z LG

n
o = Z(vﬁ’??)2|k(v§’?3)|2, (28)

because the one-sided spectral den51ty of G(”) is gpm(v) = (1 /n)> 0y — v(")) In Fig. 4 are shown the mean
Xx-upcrossing rates pg(x) and ,u (x) for several vallies of n, where x is measured in standard deviation op, of
Dg. The mean x-upcrossing rates u™(x) for n =10 and 20 (bottom and top plots, respectively) differ
significantly from yu(x), but they nearly coincide with u(x) for n>100. Since u"’(x) can either overestimate or
underestimate p;(x) significantly for small values of n, relatively large values of n are recommended.

0.6 T T T T
Ha(x)
0.5 % —e—n=10 |
—%— n=20
04| - == n=50 |
--------- n=100

0.2

0.1

SEOsESe0sss0858
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Fig. 5. Estimates of the mean x-upcrossing rates of ,u(;') of D(;) for n =10 (—e—), n =20 (=), n = 50 (wm wm), 72 = 100 (woeremmr ) and
7= 500 (—)

Consider now the process Dy, and let D(T") be the oscillator displacement to the sequence of parametric
translation models X (}1)1 converging to X 7. It is not possible to calculate the mean x-upcrossing rates ur(x)
and ,u(}q) (x) for D7 and D(}’) analytically. However, estimates of ,u(}”(x) can be obtained simply from samples of
D(T"). In Fig. 5 is shown the estimates of ,u(T")(x) for n = 10, 20, 50, 100, and 500 derived from 500 independent
samples of D(T") each of length 50. The results are plotted against the actual threshold x because the variance of
Dy is not known exactly. The estimates of ,u(T")(x) exhibit similar behavior to the mean upcrossing rates shown
in Fig. 4. They differ significantly for small values of n, for example, ,u(}z)(x) for n = 10 and 20 (bottom and top
plots, respectively). The estimates of ,u(T")(x) become stable for n>50. These results indicate the need to
use a sufficiently large n in applications to avoid unreliable approximations for the mean x-upcrossing rate
ugp of Drp.

We note that the mean square (m.s.) convergence of D(g) and D(}i) to Dg and D7, respectively, as n — oo
follows from the m.s. convergence G" % G and X (;’)1 ™ x 7.1 because the oscillator displacement is the
image of the input by a linear and bounded operator & : L,(Q,7%,P)— Ly(Q,%,P), for example,
D(}ﬂ =97[X (}1’)]]. Accordingly, we have

1D — D7l = 1LIXP)] = LIX Al < ILNXP, = X7all, (29)
where ||.Z|| is the norm of % and || - || denotes the norm in L,(Q2, %, P). Hence, the convergence X(}'?l R Xri

implies the m.s. convergence of D(T") to Dy. A similar result holds for the responses D(G") and D¢ to the
Gaussian input processes G™ and G. Moreover, we also have the convergence of the finite dimensional
distributions of D(g) to those of D since Gaussian processes are completely specified by their second-moment
properties. The results in Fig. 5 showing that the mean x-upcrossing rate ,u(}’)(x) approaches a limit value

suggest that the convergence of D(}” to Dy is stronger than the m.s. convergence established above based on
the inequality in Eq. (29). This remark is beyond the scope of this study and was not examined.
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6. Conclusions

Numerical calculations involving processes and fields cannot be performed directly since, generally, these
random functions consist of infinite families of random functions. Processes and fields need to be
approximated for calculations by deterministic functions depending on time and/or space arguments and finite
families of random variables, referred to as parametric representations. There are numerous parametric
representations for Gaussian functions defined, for example, by finite sums of deterministic functions of time
and/or space with Gaussian coefficients. It is shown that parametric representations can also be developed for
non-Gaussian stationary functions.

A two-step algorithm has been proposed for constructing parametric representations for non-Gaussian
stationary functions, referred to as parametric translation models. First, a target non-Gaussian stationary
function specified partially by its second-moment properties and marginal distribution needs to be
approximated by a translation function, provided it exists. The translation function, referred to as target
translation function, has the specified second-moment properties and marginal distribution. Second,
sequences of parametric translation models approximating the target translation function need to be defined.
It was shown that parametric translation models can match any marginal distribution. Conditions have been
established for the convergence of the second-moment properties and finite dimensional distributions of the
sequence of parametric translation models to the corresponding characteristics of the target translation
function. Two numerical examples have been presented to illustrate some of the properties of parametric
translation models, the convergence of moments and of other statistics of parametric translation models to
target statistics, and the response statistics for the response of a linear oscillator subjected to parametric
Gaussian and translation input models.
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