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Abstract

Parametric representations, that is, deterministic functions with time and/or space argument depending on finite families

of random variables, are defined and used to describe approximately stationary non-Gaussian processes and fields specified

partially by their marginal distribution and second-moment properties. The proposed parametric representations are

memoryless transformations of sequences of parametric stationary Gaussian processes and fields, and are referred to as

parametric translation models. Conditions are established for the convergence of statistics of sequences of parametric

translation models to target statistics. Two numerical examples are presented to illustrate some properties of parametric

translation models and demonstrate their use in random vibration.

r 2006 Published by Elsevier Ltd.
1. Introduction

Parametric representations for stochastic processes and random fields, that is, deterministic functions of
time and/or space depending on a finite number of random variables, are commonly used in applications since
numerical calculations can only handle finite families of random variables, and stochastic processes and
random fields generally consist of infinite families of random variables. There are many parametric
representations providing satisfactory approximations for the second-moment properties of processes and
fields but no information on their distribution, unless they are Gaussian. This is a severe limitation since (1)
most physical parameters do not follow Gaussian distributions [1, Chapter 2], (2) the existence and uniqueness
of the solution of partial differential equations with spatially varying random coefficients requires, for
example, that the samples of these coefficients take values in some bounded intervals [2], and (3) second-
moment properties are insufficient for generating samples of non-Gaussian processes and fields.

Our objective is to construct parametric representations for non-Gaussian stationary processes and fields.
A two-step algorithm is developed. First, a target process or field specified partially by its second-moment
properties and marginal distribution needs to be approximated by a translation function, that is, a memoryless
transformation of a stationary Gaussian process or field, provided it exists. The resulting approximation is
referred to as the target translation function. Second, parametric representations need to be constructed for
ee front matter r 2006 Published by Elsevier Ltd.
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the Gaussian image of the target translation function. Memoryless transformations of these representations
can be used to define sequences of parametric non-Gaussian functions, referred to as parametric translation
models. It is shown that the first two moments and the finite dimensional distributions of the sequence of
parametric translation models converge to the corresponding properties of the target translation function
under some conditions. Two numerical examples are presented to illustrate among other properties the
convergence of the statistics of parametric translation models to those of the target translation function and
potential use of parametric translation models in random vibration.

The use of parametric translation models in applications is not new, for example, these models have been
used to generate samples of non-Gaussian functions [3, Section 5.3.3.1]. However, there has been no
systematic study attempting to establish conditions under which statistics of sequences of parametric
translation models converge to specified target statistics. Determination of such conditions is a major objective
of this paper.

2. Translation processes and fields

Let XðtÞ, t 2 Rd 0 , be an Rd -valued stationary non-Gaussian function with coordinates X iðtÞ, i ¼ 1; . . . ; d, of
marginal distribution F iðx; tÞ ¼ PðX iðtÞpxÞ, mean 0, variance 1, and covariance functions zijðsÞ ¼

E½X iðtþ sÞX jðtÞ�, s 2 Rd 0 . The ðd; dÞ-matrix with entries zijðsÞ is denoted by fðsÞ ¼ E½Xðtþ sÞXðtÞT�. If t is
space, then X is a homogeneous non-Gaussian field. If t ¼ t (d 0 ¼ 1) is time, then X is a stationary non-
Gaussian process.

Suppose that X is specified partially by its second-moment properties and the marginal distributions of its
coordinates, that is, the functions zij and Fi, i; j ¼ 1; . . . ; d. Our objective is to construct parametric models for
X, that is, deterministic functions depending on time and/or space arguments and finite families of random
variables. The construction involves two steps. First, X needs to be approximated by a translation function XT

matching the specified statistics of X. We refer to XT as the target translation process, field, or function, and
assume it exists. Second, we need to construct a sequence of models X

ðnÞ
T , n ¼ 1; 2; . . . ; converging in some

sense to X as n!1. The members of this sequence are defined by memoryless transformations of parametric
Gaussian functions, and are referred to as parametric translation models. We consider the above partial
characterization for X since the first two moments and the marginal distributions of non-Gaussian functions
are frequently known in applications, and information beyond these properties is rarely available.

In this section we define translation functions XT associated with non-Gaussian stationary functions X

specified by their first two moments and marginal distributions; review of some of their essential properties is
also given. Parametric translation models X

ðnÞ
T are introduced in the next section and the convergence of the

first two moments is examined along with the convergence of the properties of the finite dimensional
distributions of these models to the corresponding properties of the target translation model XT associated
with X.

Let XT ðtÞ 2 Rd , t 2 Rd 0 , be a translation random function defined by

X T ;iðtÞ ¼ F�1i ðFðGiðtÞÞÞ ¼ hiðGiðtÞÞ; i ¼ 1; . . . ; d, (1)

where F is the distribution of the standard Gaussian variable Nð0; 1Þ and GðtÞ, t 2 Rd 0 , is an Rd-valued
stationary Gaussian function with coordinates GiðtÞ, i ¼ 1; . . . ; d, of mean 0, variance 1, and covariance
functions rijðsÞ ¼ E½Giðtþ sÞGjðtÞ�, s 2 Rd 0 . The ðd; dÞ matrix with entries rijðsÞ is denoted by
qðsÞ ¼ E½Gðtþ sÞGðtÞT�. It is assumed throughout the paper that the distribution functions Fi, i ¼ 1; . . . ; d,
are absolutely continuous.

Property 1. The translation process/field XT in Eq. (1) is stationary with marginal distributions F i, i ¼ 1; . . . ; d.

The finite dimensional distributions of XT can be calculated from

PðX T ;1ðt1;1Þpx1;1; . . . ;X T ;1ðt1;m1
Þpx1;m1

; . . . ;X T ;d ðtd ;1Þpxd;1; . . . ;X T ;dðtd;md
Þpxd;md

gÞ

¼ PðG1ðt1;1Þph�11 ðx1;1Þ; . . . ;G1ðt1;m1
Þph�11 ðx1;m1

Þ,

. . . ;Gdðtd;1Þph�1d ðxd ;1Þ; . . . ;Gdðtd ;md
Þph�1d ðxd ;md

ÞÞ ¼ Fðn; rÞ, ð2Þ
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where m1X0; . . . ;mdX0 are integers, ðt1;1; . . . ; td;md
Þ are arbitrary arguments, Fðn; rÞ denotes the joint

cumulative distribution of the Gaussian vector ðG1ðt1;1Þ; . . . ;Gd ðtd;md
ÞÞ with covariance matrix r obtained from

the covariance functions rijð�Þ of the Gaussian process G, and is calculated at the argument
n ¼ ðh�11 ðx1;1Þ; . . . ; h

�1
d ðxd;md

ÞÞ. The equality in Eq. (2) holds since hi : R�!R, i ¼ 1; . . . ; d, are increasing
functions, and shows that XT is stationary since G is stationary. We also have

PðX T ;iðtÞpxiÞ ¼ PðGðtÞph�1i ðxiÞÞ ¼ Fðh�1i ðxiÞÞ ¼ F iðxÞ (3)

from Eq. (2), so that the coordinates of XT and X have the same marginal distributions.

Property 2. Moments of any order of XT can be calculated from

mðk1; . . . ; kd ; t1; . . . ; tdÞ ¼ E
Yd

i¼1

X T ;iðtiÞ
ki

" #
¼ E

Yd

i¼1

hiðGiðtiÞÞ
ki

" #
(4)

provided they exist, where k1X0; . . . ; kdX0 are arbitrary integers.

The result in Eq. (4) follows from the definition of XT in Eq. (1) and the fact that hi are increasing functions.
We note that mðk1; . . . ; kd ; t1; . . . ; tdÞ is equal to 0 and 1 for ðki ¼ 1; kj ¼ 0; jaiÞ and ðki ¼ 2; kj ¼ 0; jaiÞ,
respectively. The covariance functions of XT are given by

zijðti � tjÞ ¼ E½X T ;iðtiÞX T ;jðtjÞ� ¼ E½hiðGiðtiÞÞ hjðGjðtjÞÞ�

¼

Z
R2

hiðuÞhjðvÞfðu; v; rijðti � tjÞÞdudv, ð5Þ

where fðu; v; rÞ ¼ expð�ðu2 þ v2 � 2ruvÞ=2Þ=ð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
Þ denotes the joint density of a two-dimensional

Gaussian vector with correlated Nð0; 1Þ coordinates and correlation coefficient r. The argument ti � tj rather
than ðti; tjÞ is used in Eq. (5) since XT is stationary. We note that zijðti � tjÞ coincides with m in Eq. (4)
for ki ¼ kj ¼ 1 and kq ¼ 0 for qai; j, and that zij is bounded, by the Cauchy–Schwarz inequality and
properties of Fi.

Property 3. If the functions hi, i ¼ 1; . . . ; d, are differentiable, then zijðsÞ is an increasing function of rijðsÞ. If

rijðsÞ ¼ 0, then zijðsÞ ¼ 0. The covariance function zijðsÞ takes values in the range ½z�ij ; z
��
ij �, where

z�ij ¼ E½hiðNÞhjð�NÞ�,

z��ij ¼ E½hiðNÞhjðNÞ� (6)

and N denotes a Nð0; 1Þ variable.

Since the functions hi are differentiable, we have

qzijðsÞ

qrijðsÞ
¼ E½h0iðGiðtiÞÞ h

0
jðGjðtjÞÞ� (7)

by Price’s theorem [4, Section 2.3], where h0i, i ¼ 1; . . . ; d, denote the derivatives of hi. Since hi are increasing
functions, their derivatives are positive, so that the expectation on the right side of Eq. (7) is positive. Hence,
zijðsÞ is an increasing function of rijðsÞ.

That zijðsÞ ¼ 0 for rijðsÞ ¼ 0 follows from Eq. (5) since fðu; v; 0Þ ¼ fðuÞfðvÞ, where fðuÞ ¼ expð�u2=2Þ
ffiffiffiffiffiffi
2p
p

.
If rijðsÞ ¼ �1, then Giðtþ sÞ and �GjðtÞ are equal to a standard Gaussian variable N in distribution. The range
in Eq. (6) results since zijðsÞ increases with rijðsÞ and rijðsÞ can only take values in ½�1; 1�.

In applications we may be given the functions ðFi; zijÞ, so that we need to find rij. This inverse problem has
no solution if zij takes values outside ½z

�
ij ; z
��
ij �. If zij takes values in ½z

�
ij ; z
��
ij �, we can calculate rijðsÞ for each zijðsÞ.

However, the resulting functions rij are not necessarily covariance functions, for example, one or more
functions rii may not be positive definite [1, Section 3.1.1].
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Property 4. If G is continuous almost surely (a.s.) and the functions hi are continuous, then XT is continuous a.s.

Since G is continuous a.s. its samples Gið�;oÞ are continuous functions for o 2 OnO0, where ðO;F;PÞ is the
probability space on which G is defined and PðO0Þ ¼ 0. Then hi � Gið�;oÞ is continuous for o 2 OnO0 since hi is
continuous by assumption, so that XT is continuous a.s.

Property 5. Let N1 and N2 be independent Nð0; 1Þ variables. If G is mean square (m.s.) continuous, the functions

hi are continuous, and E½hiðjN1j þ jN2jÞ
2
�o1, then XT is m.s. continuous.

Consider an arbitrary coordinate X T ;iðtiÞ ¼ hiðGiðtiÞÞ of XT . We need to show that the m.s. continuity of Gi,
that is, the convergence riiðsÞ ! 1 as ksk ! 0, implies the convergence ziiðsÞ ! 1 as ksk ! 0. If the limit
ksk ! 0 can be taken under the integral in Eq. (5), we have

lim
ksk!0

ziiðsÞ ¼

Z
R2

lim
ksk!0

hiðxr1 þ x2r2Þhiðxr1 � x2r2Þfðx1; x2; 0Þdx1 dx2

¼

Z
R2

hiðx1Þ
2fðx1; x2; 0Þdx1 dx2 ¼

Z
R

hiðx1Þ
2fðx1Þdx1

Z
R

fðx2Þdx2 ¼ E½hiðNÞ
2
� ¼ 1 ð8Þ

by the change of variables ðu ¼ xr1 þ x2r2; v ¼ xr1 � x2r2Þ with r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ riiðsÞÞ=2

p
and r2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� riiðsÞÞ=2
p

. The second and the last equalities in Eq. (8) follow by the continuity of hi and the postulated

properties of the distributions Fi, respectively.
That the interchange of the integral and the limit operations performed in Eq. (8) is valid results from the

proof of Property 9 in the following section. The proof of this property also shows that the condition
E½hiðjN1j þ jN2jÞ

2
�o1 is needed.

3. Parametric translation processes and fields

Consider the sequence of parametric translation models

X
ðnÞ
T ;iðtÞ ¼ F�1i � FðG

ðnÞ
i ðtÞÞ ¼ hiðG

ðnÞ
i ðtÞÞ; i ¼ 1; . . . ; d, (9)

where GðnÞ ¼ fG
ðnÞ
i g, n ¼ 1; 2; . . . ; is a sequence of stationary Gaussian functions such that E½G

ðnÞ
i ðtÞ� ¼ 0,

E½G
ðnÞ
i ðtÞ

2
� ¼ 1, and rðnÞij ðsÞ ¼ E½G

ðnÞ
i ðtþ sÞG

ðnÞ
j ðtÞ�. As previously, denote by qðnÞðsÞ ¼ E½GðnÞðtþ sÞGðnÞðtÞT � a

ðd; dÞ-matrix with entries rðnÞij ðsÞ. Truncated Karhunen–Loève or other parametric representations for G

depending on a finite number of random variables can be used to construct the sequence of processes GðnÞ. We

assume the m.s. convergence of GðnÞ to G, which implies the convergence rðnÞij ðsÞ ! rijðsÞ as n!1 for all

s 2 Rd 0 and all i; j ¼ 1; . . . ; d.
Parametric translation models as in Eq. (9) have been used to generate samples of non-Gaussian functions

[3, Section 5.3.3.1]. However, the relationship between statistics of X
ðnÞ
T ¼ fX

ðnÞ
T ;ig and XT ¼ fX T ;ig has not been

examined systematically. One of the main objective of this paper is to study the convergence of statistics of X
ðnÞ
T

to statistics of XT as n!1.
We give some useful properties of the sequence of parametric translation processes X

ðnÞ
T in Eq. (9), and

establish conditions under which statistics of X
ðnÞ
T converge to statistics of XT as n!1.

Property 6. The members of the sequence of parametric translation processes fX
ðnÞ
T g are stationary for each n.

Moreover, X
ðnÞ
T becomes a version of XT as n!1.

The finite dimensional distributions of X
ðnÞ
T can be calculated from Eq. (2) with GðnÞ in place of G, so that

these distributions are equal to Fðn; rðnÞÞ, where rðnÞ corresponds to the covariance functions rðnÞij rather than rij .
The postulated convergence krðnÞ � rk ! 0, n!1, implies that for �40 there exits nijð�ÞX1 such that

jr
ðnÞ
ij � rijjo� for nXnijð�Þ, so that we have jr

ðnÞ
ij � rijjo� for all i; j and nXnð�Þ ¼ maxijfnijð�Þg. Accordingly,

r
ðnÞ
ij 2 ðrij � �; rij þ �Þ for nXnð�Þ and some �40 such that �1orij � �orij þ �o1 for all i; j. It is assumed

without loss of generality that the off-diagonal entries of r are in the range ð�1; 1Þ. If an off-diagonal entry of r
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is �1, the coordinates of the Gaussian vector corresponding to this entry are perfectly correlated so that we
can reduce the dimension of r to eliminate this redundancy.

The matrices rþ ¼ frij þ �g and r� ¼ frij � �g are positive definite provided � is sufficiently small, so that they
are valid covariance matrices. Let Fcðn; rÞ denote the probability that the coordinates of a standard Gaussian
vector with covariance matrix r are larger than the coordinates of n, for example, Fcðn; rÞ ¼
PðN14x1;N24x2Þ for a bivariate standard Gaussian vector ðN1;N2Þ with correlation coefficient r12. The
inequalities

Fcðn; r
þÞXFcðn; r

ðnÞÞXFcðn; r
�Þ (10)

hold by a theorem by Slepian [5]. Since �40 can be made arbitrarily small, we have the convergence
Fcðn; rðnÞÞ�!Fcðn; rÞ as n!1.

Arguments used to obtain the result in Eq. (3) can be used to show that the functions F i, i ¼ 1; . . . ; d; are the

marginal distributions of the co-ordinates X
ðnÞ
T ;i of X

ðnÞ
T . Hence, the coordinates of XT and X

ðnÞ
T have the same

marginal distributions for each n ¼ 1; 2; . . . ; and the finite dimensional distributions of X
ðnÞ
T converge to those

of XT as n!1, that is, X
ðnÞ
T becomes a version of XT for large n.

Property 7. Moments mðnÞðk1; . . . ; kd ; t1; . . . ; td Þ of any order of X
ðnÞ
T can be calculated from Eq. (4) with GðnÞ in

place of G.

This statement follows directly from the definition of X
ðnÞ
T . The covariance functions of X

ðnÞ
T are the moments

mðnÞðk1; . . . ; kd ; t1; . . . ; tdÞ for ki ¼ kj ¼ 1 and kq ¼ 0 for qai; j, and are given by (Eq. (5))

zðnÞij ðti � tjÞ ¼ E½X
ðnÞ
T ;iðtiÞX

ðnÞ
T ;jðtjÞ� ¼ E½hiðG

ðnÞ
i ðtiÞÞhjðG

ðnÞ
j ðtjÞÞ�

¼

Z
R2

hiðuÞhjðvÞfðu; v; r
ðnÞ
ij ðti � tjÞÞdudv. ð11Þ

The expression of zðnÞij shows that X
ðnÞ
T ;i is weakly stationary, in agreement with the previous property.

Property 8. If the functions hi, i ¼ 1; . . . ; d, are differentiable, then zðnÞij are increasing functions of rðnÞij , and

cannot take values outside the range ½z�ij ; z
��
ij � given by Eq. (6).

The arguments used to prove the third property in the previous section apply directly here since Eq. (7) is
valid with GðnÞ in place of G.

Property 9. Let N1 and N2 be independent Nð0; 1Þ variables. If E½jhiðjN1j þ jN2jÞhjðjN1j þ jN2jÞj�o1,

i; j ¼ 1; . . . ; d, and hi are continuous functions, then the covariance functions zðnÞij ðsÞ of X
ðnÞ
T converge to the

covariance functions zijðsÞ of XT as n!1 for all s 2 Rd 0 and all i; j ¼ 1; . . . ; d.

A direct consequence of this result is that the second-moment properties of XT can be approximated by the
second-moment properties of X

ðnÞ
T for a sufficiently large n.

The covariance functions zðnÞij in Eq. (11) can be expressed in the form

zðnÞij ðsÞ ¼

Z
R2

hiðx1b
ðnÞ
1 þ x2b

ðnÞ
2 Þhjðx1b

ðnÞ
1 � x2b

ðnÞ
2 Þfðx1; x2; 0Þdx1 dx2

¼

Z
R2

g
ðnÞ
ij ðx1; x2Þdx1 dx2 ð12Þ

by using the change of variables

u ¼ x1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ rðnÞij Þ=2

q
þ x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rðnÞij Þ=2

q
¼ x1b

ðnÞ
1 þ x2b

ðnÞ
2 ,

v ¼ x1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ rðnÞij Þ=2

q
� x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rðnÞij Þ=2

q
¼ x1b

ðnÞ
1 � x2b

ðnÞ
2 . (13)
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Since hi are increasing functions, bðnÞk 2 ½0; 1�, and x1b
ðnÞ
1 � x2b

ðnÞ
2 pjx1j þ jx2j, we have hiðb

ðnÞ
1 x1 � bðnÞ2 x2Þ

pjhiðjx1j þ jx2jÞj, so that

jg
ðnÞ
ij ðx1; x2Þjpjhiðjx1j þ jx2jÞhjðjx1j þ jx2jÞjfðx1; x2; 0Þ ¼ qijðx1; x2Þ; nX1. (14)

We note that the functions qijðx1; x2Þ are Lebesgue integrable in R2 by assumption. The inequality in Eq. (14)

implies that the functions g
ðnÞ
ij ðx1; x2Þ are also Lebesgue integrable in R2. Let gijðx1; x2Þ be the function

g
ðnÞ
ij ðx1; x2Þ with rijðsÞ in place of rðnÞij ðsÞ. The continuity of the functions hi and the convergence rðnÞij ðsÞ ! rijðsÞ

imply the convergence g
ðnÞ
ij ðx1; x2Þ ! gijðx1; x2Þ as n!1. These properties yield

zðnÞij ðsÞ ¼

Z
R2

g
ðnÞ
ij ðx1; x2Þdx1 dx2�!

Z
R2

gijðx1; x2Þdx1 dx2 ¼ zijðsÞ; n!1, (15)

by Lebesgue’s dominated convergence theorem [6, Theorem 4.3.5].

Property 10. If the processes GðnÞ are a.s. and m.s. continuous and the functions hi are continuous, then X
ðnÞ
T are

a.s. and m.s. continuous, respectively.

Arguments used to prove the fourth and fifth properties in the previous section can be applied directly to
prove this property.

4. Monte Carlo algorithm

Let XT be the translation random function in Eq. (1) specified completely by the marginal distributions F i,

i ¼ 1; . . . ; d, and the covariance functions rij of its Gaussian image G. Let X
ðnÞ
T , n ¼ 1; 2; . . . ; be the sequence of

parametric translation models in Eq. (9), where GðnÞ converges in mean square to G. We have seen that

the second-moment properties and the finite dimensional distribution of X
ðnÞ
T converge to those of XT

as n!1.
Our objective is to generate samples of XT . Since it is not possible to generate samples of XT but samples of

X
ðnÞ
T can be generated, we use samples of X

ðnÞ
T as a substitute for samples of XT . Theoretical considerations in

the previous sections show that statistics of XT can be approximate by corresponding statistics of X
ðnÞ
T , which

can be estimated from samples of X
ðnÞ
T for a sufficiently large n.

The following two-step Monte Carlo algorithm can be used to generate samples of X
ðnÞ
T . The algorithm is

based on the definition on X
ðnÞ
T in Eq. (9).

Step 1: Generate samples GðnÞðt;oÞ of the Gaussian image GðnÞ of X
ðnÞ
T . There are many algorithms for

generating samples of stationary Gaussian functions [3, Section 5.3.1]. An algorithm based on the spectral
representation method is used in Example 1 of the following section to generate samples of GðnÞ taking values
in R2 (Eq. (21)).

Step 2: The mapping of the samples of GðnÞ generated in Step 1 into samples of X
ðnÞ
T is given by

Eq. (9). For example, let GðnÞðt;oÞ be a sample of GðnÞ. The corresponding sample of X
ðnÞ
T can be calculated

from

X
ðnÞ
T ;iðt;oÞ ¼ F�1i � FðG

ðnÞ
ðt;oÞÞ ¼ hiðG

ðnÞ
ðt;oÞÞ. (16)

Generally, the transformation in Eq. (16) is not available analytically, so that it has to be performed
numerically. Two MATLAB functions can be used to calculate samples of X

ðnÞ
T ;i from samples of GðnÞ:
�
 The cdf MATLAB function,

FðGðnÞi ðt;oÞÞ ¼ cdfð‘normal’;GðnÞi ðt;oÞ; 0; 1Þ,

performs the mapping GðnÞðt;oÞ7!FðGðnÞðt;oÞÞ.

�
 The icdf MATLAB function,

X
ðnÞ
T ;iðt;oÞ ¼ F�1i � FðG

ðnÞ
ðt;oÞÞ ¼ icdfð‘name’;FðGðnÞi ðt;oÞÞ; a; b; . . .Þ,
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performs the mapping GðnÞðt;oÞ7!X
ðnÞ
T ;iðt;oÞ. The use of these MATLAB functions is demonstrated in

Example 1 of the following section.

5. Numerical examples

Two examples are presented. The first examples illustrates the convergence of the covariance functions of a
sequence of parametric translation processes to those of a target translation process. The second example
examines the convergence of responses of a linear oscillator to a sequence of parametric Gaussian and
translation input processes.

Example 1. Let XT be an R2-valued translation process with coordinates X T ;1 and X T ;2 following lognormal
and beta distributions of mean 0 and variance 1, that is,

X T ;1ðtÞ ¼ �1:272þ expð0:6937G1ðtÞÞ,

X T ;2ðtÞ ¼ �3þ 5F�1 � FðG2ðtÞÞ, (17)

where F is a beta distribution with range ð�3; 2Þ and parameters ðg ¼ 3; Z ¼ 2Þ [7, Chapter 24], and the image
G of XT is an R2-valued stationary Gaussian process with coordinates ðG1;G2Þ of mean 0 and variance 1. The
covariance and one-sided spectral density functions of G are

rklðtÞ ¼ E½Gkðtþ tÞGlðtÞ� ¼ ð1� lÞ
sinðn̄ktÞ
n̄kt

dkl þ l
sinðn̄tÞ
n̄t

; k; l ¼ 1; 2 (18)

and

gklðnÞ ¼
1� l
n̄k

dkl1ð0onon̄kÞ þ
l
n̄
1ð0onon̄Þ, (19)

respectively, where n̄k; n̄40 and l 2 ½0; 1� are some constants, 1ðAÞ ¼ 1 or 0 if A is, respectively, true or false,
and dkl ¼ 1 and 0 for k ¼ l and kal, respectively. The covariance functions zkl , k; l ¼ 1; 2, of XT can be
calculated from Eqs. (5), (17) and (18).

We note that the processes ðG1;G2Þ with the above properties can be given by

GkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� l
p

ZkðtÞ þ
ffiffiffi
l
p

ZðtÞ; k ¼ 1; 2, (20)

where Zk and Z are independent band limited Gaussian white noise processes with mean 0, variance 1, and
frequency band ð0; n̄kÞ and ð0; n̄Þ, respectively.

We construct a sequence of parametric translation processes X
ðnÞ
T , n ¼ 1; 2; . . . ; converging to XT by using

the spectral representation theorem for weakly stationary stochastic processes [3, Section 5.3.1.1]. Let

Z
ðnÞ
k ðtÞ ¼

1ffiffiffi
n
p
Xn

i¼1

ðA
ðnÞ
k;i cosðn

ðnÞ
k;i tÞ þ B

ðnÞ
k;i sinðn

ðnÞ
k;i tÞÞ,

ZðnÞðtÞ ¼
1ffiffiffi
n
p
Xn

i¼1

ðA
ðnÞ
i cosðnðnÞi tÞ þ B

ðnÞ
i sinðnðnÞi tÞÞ, (21)

be approximations of Zk and Z corresponding to partitions of the frequency ranges ð0; n̄kÞ and ð0; n̄Þ in n equal
intervals, where A

ðnÞ
k;i , B

ðnÞ
k;i , A

ðnÞ
i , and B

ðnÞ
i are independent Nð0; 1Þ variables, nk;i ¼ ði � 1=2Þn̄k=n, i ¼ 1; . . . ; n,

and ni ¼ ði � 1=2Þn̄=n, i ¼ 1; . . . ; n. Let

G
ðnÞ
k ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� l
p

Z
ðnÞ
k ðtÞ þ

ffiffiffi
l
p

ZðnÞðtÞ; k ¼ 1; 2, (22)

define a sequence GðnÞ ¼ ðG
ðnÞ
1 ;G

ðnÞ
2 Þ of parametric stationary Gaussian processes. The limit of GðnÞ as n!1 is

a process with the same probability law as G, so that GðnÞ becomes a version of G as n!1 [3, Section
5.3.1.1]. The corresponding sequence of parametric translation models X

ðnÞ
T is given by Eq. (17) with GðnÞ in

place of G.
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Fig. 1. Estimates of the covariance functions for zðnÞ11 for n ¼ 10 ( ), n ¼ 50 ( ) and n ¼ 100 ( ).
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Fig. 2. Estimates of the covariance functions for zðnÞ12 for n ¼ 10 ( ), n ¼ 50 ( ) and n ¼ 100 ( ).

M. Grigoriu / Journal of Sound and Vibration 303 (2007) 428–439 435
We note that the coordinates of X
ðnÞ
T and XT have the same marginal distributions by construction.

In Figs. 1–3, are shown estimates of the covariance functions zðnÞkl , k; l ¼ 1; 2, of X
ðnÞ
T obtained from 500

independent samples of this process for n̄k ¼ 25, n̄ ¼ 5, and l ¼ 0:3. There are notable differences between the
estimates of zðnÞkl corresponding to n ¼ 10 and 100. Estimates of zðnÞkl for nb100 are practically indistinguishable
from those for n ¼ 100 indicating the convergence zðnÞkl ðtÞ ! zklðtÞ as n!1 in agreement with a Property 9
proved in a previous section for parametric translation models. The results plotted in Figs. 1–3 show that the
parametric translation models X

ðnÞ
T with nX100 considered in this example approximate satisfactorily the

second-moment properties of the target translation process XT . The results also provide useful information on
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Fig. 3. Estimates of the covariance functions for zðnÞ22 for n ¼ 10 ( ), n ¼ 50 ( ) and n ¼ 100 ( ).
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the rate of convergence of the approximating sequence of processes X
ðnÞ
T . They show that the covariance

functions zðnÞkl ðtÞ converge faster to the target covariance functions zklðtÞ for smaller rather than larger time

lags, for example, zðnÞkl ðtÞ ’ zklðtÞ for n ¼ 10 and tp1, but zðnÞkl ðtÞ with n ¼ 10 is an unsatisfactory

approximation for zklðtÞ if t41.

The two-step Monte Carlo algorithm in the previous section has been applied to generate samples of X
ðnÞ
T .

Samples of GðnÞ have been calculated from Eqs. (21) and (22) with A
ðnÞ
k;i , B

ðnÞ
k;i , A

ðnÞ
i , and B

ðnÞ
i replaced by

independent samples of Nð0; 1Þ. The mapping in Eq. (17) has been used to obtain samples of X
ðnÞ
T from samples

of GðnÞ. The first equality in Eq. (17) is elementary and has been used directly. The second equality in this

equation is not available in analytical form, so that the MATLAB function �3þ 5 icdf(‘beta’,FðGðnÞ2 Þðt;oÞ,

g,Z) was used to map samples of G
ðnÞ
2 into samples of X

ðnÞ
T ;2.

Example 2. Let G1 and X T ;1 be the processes in Eqs. (17) and (20) with l ¼ 0. Denote by DG and DT the
displacement of a linear oscillator with natural frequency n0 ¼ 3 and damping ratio x ¼ 0:05 subjected to G1

and X T ;1, respectively. These displacement processes satisfy the differential equations

€DGðtÞ þ 2xn0 _DGðtÞ þ n202DGðtÞ ¼ G1ðtÞ,

€DT ðtÞ þ 2xn0 _DT ðtÞ þ n20DT ðtÞ ¼ X T ;1ðtÞ. (23)

The stationary responses DG and DT have mean 0 but different covariance functions because the
covariance functions of G1 and X T ;1 do not coincide. Generally, the difference between the second-moment
properties of X T ;1 and G1 is not significant [1, Section 3.1.1], so that the first two moments of DG and DT are
similar.

Consider first the process DG, and let D
ðnÞ
G be the oscillator displacement to the sequence of parametric

processes G
ðnÞ
1 in Eq. (22) converging to G1. The one-sided spectral density of the stationary response DG is

gDG
ðnÞ ¼

1=n̄1
ðn2 � n20Þ

2
þ ð2xnn0Þ

2
1ð0onon̄1Þ ¼ jkðnÞj2ð1=n̄1Þ1ð0onon̄1Þ, (24)
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so that the variance s2G of DG and the variance s2_DG
of _DG are

s2DG
¼

Z n̄1

0

gDG
ðnÞdn ’

p=n̄1
4xn30

,

s2_DG
¼

Z n̄1

0

n2gDG
ðnÞdn ’

p=n̄1
4xn0

, (25)

where the above approximations hold if n05n̄1 and the damping ratio x is relatively small [8, Section 5.2.1].
The mean x-upcrossing rate of DG can be calculated from

mGðxÞ ¼
s _DG

2psDG

exp �
x2

2s2DG

 !
. (26)

The mean x-upcrossing rate of D
ðnÞ
G is

mðnÞG ðxÞ ¼
sðnÞ_DG

2ps
D
ðnÞ

G

exp �
x2

2s2
D
ðnÞ

G

0
@

1
A, (27)

where

s2
D
ðnÞ

G

¼
1

n

Xn

i¼1

jkðnðnÞ1;i Þj
2,

sðnÞ
2

_DG
¼

1

n

Xn

i¼1

ðnðnÞ1;i Þ
2
jkðnðnÞ1;i Þj

2, (28)

because the one-sided spectral density of G
ðnÞ
1 is g

D
ðnÞ

G

ðnÞ ¼ ð1=nÞ
Pn

i¼1dðn� nðnÞ1;i Þ. In Fig. 4 are shown the mean
x-upcrossing rates mGðxÞ and mðnÞG ðxÞ for several values of n, where x is measured in standard deviation sDG

of
DG. The mean x-upcrossing rates mðnÞðxÞ for n ¼ 10 and 20 (bottom and top plots, respectively) differ
significantly from mGðxÞ, but they nearly coincide with mðxÞ for nX100. Since mðnÞðxÞ can either overestimate or
underestimate mGðxÞ significantly for small values of n, relatively large values of n are recommended.
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Fig. 4. Mean x-upcrossing rates mG ( ) of DG and mðnÞG of D
ðnÞ
G for n ¼ 10 ( ), n ¼ 20 ( ), n ¼ 50 ( ) and n ¼ 100 ( ).
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Consider now the process DT , and let D
ðnÞ
T be the oscillator displacement to the sequence of parametric

translation models X
ðnÞ
T ;1 converging to X T ;1. It is not possible to calculate the mean x-upcrossing rates mT ðxÞ

and mðnÞT ðxÞ for DT and D
ðnÞ
T analytically. However, estimates of mðnÞT ðxÞ can be obtained simply from samples of

D
ðnÞ
T . In Fig. 5 is shown the estimates of mðnÞT ðxÞ for n ¼ 10, 20, 50, 100, and 500 derived from 500 independent

samples of D
ðnÞ
T each of length 50. The results are plotted against the actual threshold x because the variance of

DT is not known exactly. The estimates of mðnÞT ðxÞ exhibit similar behavior to the mean upcrossing rates shown

in Fig. 4. They differ significantly for small values of n, for example, mðnÞT ðxÞ for n ¼ 10 and 20 (bottom and top

plots, respectively). The estimates of mðnÞT ðxÞ become stable for nX50. These results indicate the need to

use a sufficiently large n in applications to avoid unreliable approximations for the mean x-upcrossing rate
mT of DT .

We note that the mean square (m.s.) convergence of D
ðnÞ
G and D

ðnÞ
T to DG and DT , respectively, as n!1

follows from the m.s. convergence GðnÞ �!
m:s:

G and X
ðnÞ
T ;1�!

m:s:
X T ;1 because the oscillator displacement is the

image of the input by a linear and bounded operator L : L2ðO;F;PÞ ! L2ðO;F;PÞ, for example,

D
ðnÞ
T ¼L½X

ðnÞ
T ;1�. Accordingly, we have

kD
ðnÞ
T �DTk ¼ kL½X

ðnÞ
T ;1� �L½X T ;1�kpkLkkX

ðnÞ
T ;1 � X T ;1k, (29)

where kLk is the norm of L and k � k denotes the norm in L2ðO;F;PÞ. Hence, the convergence X
ðnÞ
T ;1�!

m:s:
X T ;1

implies the m.s. convergence of D
ðnÞ
T to DT . A similar result holds for the responses D

ðnÞ
G and DG to the

Gaussian input processes GðnÞ and G. Moreover, we also have the convergence of the finite dimensional

distributions of D
ðnÞ
G to those of DG since Gaussian processes are completely specified by their second-moment

properties. The results in Fig. 5 showing that the mean x-upcrossing rate mðnÞT ðxÞ approaches a limit value

suggest that the convergence of D
ðnÞ
T to DT is stronger than the m.s. convergence established above based on

the inequality in Eq. (29). This remark is beyond the scope of this study and was not examined.
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6. Conclusions

Numerical calculations involving processes and fields cannot be performed directly since, generally, these
random functions consist of infinite families of random functions. Processes and fields need to be
approximated for calculations by deterministic functions depending on time and/or space arguments and finite
families of random variables, referred to as parametric representations. There are numerous parametric
representations for Gaussian functions defined, for example, by finite sums of deterministic functions of time
and/or space with Gaussian coefficients. It is shown that parametric representations can also be developed for
non-Gaussian stationary functions.

A two-step algorithm has been proposed for constructing parametric representations for non-Gaussian
stationary functions, referred to as parametric translation models. First, a target non-Gaussian stationary
function specified partially by its second-moment properties and marginal distribution needs to be
approximated by a translation function, provided it exists. The translation function, referred to as target
translation function, has the specified second-moment properties and marginal distribution. Second,
sequences of parametric translation models approximating the target translation function need to be defined.
It was shown that parametric translation models can match any marginal distribution. Conditions have been
established for the convergence of the second-moment properties and finite dimensional distributions of the
sequence of parametric translation models to the corresponding characteristics of the target translation
function. Two numerical examples have been presented to illustrate some of the properties of parametric
translation models, the convergence of moments and of other statistics of parametric translation models to
target statistics, and the response statistics for the response of a linear oscillator subjected to parametric
Gaussian and translation input models.
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